On-Line Nonlinear Programming as a Generalized Equation

Mihai Anitescu

anitescu@mcs.anl.gov

Joint Work with: Victor Zavala

Motivation

On-Line Optimization: MPC, MHE, RTO, Finance

Data Updated at Predefined Sampling Times

Decisions Obtained by Solving NLP/QP with Current Data

Objective: Accommodate Large-Scale Dynamic Models in Suitable Time Scales

Property: Problems Close to Each Other! Can we exploit this to ensure stability?

An abstract view of the issues

- Rolling horizon optimal control: $F(w,t) = 0 \Rightarrow w = w(t)$ the optimal control manifold.
 - We already wrote the optimality conditions to get it here
 - F can be an operator that includes differential equations for dynamics, which can be discretized somehow.
 - w includes state variables, control variables and Lagrange multipliers
- The variable w cannot be computed instantly, so we must allow it a time Δt .

 The problem becomes $F(w(t^k), t^k) = 0$; $F(w(t^{k+1}), t^{k+1}) = 0$; $t^{k+1} = t^k + \Delta t$
- Better, but we cannot guarantee that we find a solution in Δt even now. What if we solve the subproblem inexactly, e.g only its linearization or an inexact linearization?

$$F(w^{k}, t^{k}) + \nabla_{w}F(w^{k}, t^{k})(w^{k+1} - w^{k}) + \nabla_{t}F(w^{k}, t^{k})\Delta t + r^{k} = 0;$$

Could it work? Yes, if we can track the manifold (stability):

$$\|w^k - w(t^k)\| \le O((\Delta t)^p)$$

- Can we track the manifold with as little computation per time step as possible, particularly when inequality constraints are included (limited ramps, limited resources, sufficient supply)? --- This becomes our central investigation issue.
- Can we do this in the limit of rapidly increasing information? $\Lambda t \rightarrow 0$

Outline of the Talk

1. Nonlinear Programming

- 2. Generalized Equations
- Single QP per Sampling Time
- Stability of NLP Error as $\Delta t
 ightarrow 0$
- 3. Augmented Lagrangean Strategy
- Cheap Strategies for QP Solution Projected Gauss Seidel
- 4. Numerical Case Study
- 5. Conclusions and Future Work

1. Nonlinear Programming	1.	Nonl	inear	Progr	amming
--------------------------	----	------	-------	--------------	--------

Nonlinear Programming

$$\nabla_x f(x,t) + \nabla_x c(x,t) \lambda - \nu = 0$$

$$c(x,t) = 0$$

$$X \cdot V = \mu e$$

$$\begin{bmatrix} \mathbf{H} & \mathbf{A} & -I \\ \mathbf{A}^T & \\ V & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta \nu \end{bmatrix} = -\begin{bmatrix} \mathbf{r}_x(w^k,t) \\ \mathbf{r}_\lambda(w^k,t) \\ X^k \cdot V^k - \mu e \end{bmatrix}$$

min
$$\nabla_x f(x^k, t)^T \Delta x + \frac{1}{2} \Delta x^T \mathbf{H} \Delta x$$

s.t. $c(x^k, t) + \mathbf{A}^T \Delta x = 0$
 $\Delta x \ge -x^k$

$$\begin{bmatrix} \mathbf{H} & \mathbf{A} & -I \\ \mathbf{A}^T & & \\ V & & X \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta \nu \end{bmatrix} = - \begin{bmatrix} \mathbf{r}_x(w^k, t) \\ \mathbf{r}_\lambda(w^k, t) \\ X^k \cdot V^k - \mu e \end{bmatrix}$$

Newton Step Computation

$$\begin{bmatrix} \mathbf{H} & \mathbf{A} & -I & & \\ \mathbf{A}^T & & & & \\ \mathbf{V} & \mathbf{X} & \mathbf{E}_x & \mathbf{E}_\nu \\ \hline \mathbf{E}_x^T & & & \\ & & \mathbf{E}_\nu^T \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \\ \Delta \nu \\ \hline \Delta \sigma_x \\ \Delta \sigma_\nu \end{bmatrix} = - \begin{bmatrix} \mathbf{r}_x(w^k, t) \\ \mathbf{r}_{\lambda}(w^k, t) \\ \mathbf{r}_{c}(w^k, t) \\ \hline \mathbf{r}_{\sigma_x}(w^k, t) \\ \mathbf{r}_{\sigma_\nu}(w^k, t) \end{bmatrix}$$

Interior-Point: - Fixed Matrix Structure - No Symbolic Factorization Needed

Active-Set: - Changing Matrix Structure

- Each Internal QP Iteration is as Expensive as Outer IP Iteration

Newton Steps Accurate but Overhead is High. Limits attainable Δt !

Nonlinear Programming

A "Fast" NLP Solver is NOT Enough ...

Approximate NLP Strategies

- One Quadratic Program (QP) Per Sampling Time de Oliveira & Biegler, 1995, Diehl, et.al., 2001, Ohtsuka, 2004
- Accurate But Slow vs. Approximate But Fast?
- The Dynamic System Escapes if we Insist in Accurate Solution ...

Issues:

- Stability of NLP Error, Changing Active Sets
- Solving the QP as Quickly as Possible (If $\Delta t \to 0$ Cheap Steps are Enough!)

1. Generalized Equations

Generalized Equations

Generalized Equations (GE) Robinson, 1977, 1980

First-Order KKT Conditions of $\min_{w \in W} f(w,t), \quad W = \{w \, | \, w \geq 0\}$

$$-\nabla_w f(w^*, t)^T (w^* - w) \ge 0, \ \forall w \in W$$

Canonical Linearized Generalized Equation (LGE)

$$\delta \in F(w_{t_0}^*, t_0) + \nabla_w F(w_{t_0}^*, t_0)(w - w_{t_0}^*) + \mathcal{N}_W(w)$$
 $w(\delta) = \psi^{-1}[\delta] \leftarrow \text{Solution Operator}$

Definition (Robinson, 1977): LGE is Strongly Regular at $w_{t_0}^*$ if $\exists L_\psi \geq 0$ s.t. $\|w(\delta) - w_{t_0}^*\| \leq L_\psi \|\delta\|$

Theorem: ψ^{-1} is Lipschitzian if:

$$\mathbf{M} = \nabla_w F(w_{t_0}^*, t_0) = \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} & \mathbf{M}_{13} \\ \mathbf{M}_{21} & \mathbf{M}_{22} & \mathbf{M}_{23} \\ \mathbf{M}_{31} & \mathbf{M}_{32} & \mathbf{M}_{33} \end{bmatrix} \quad \hat{\mathbf{M}} = \begin{bmatrix} \mathbf{M}_{11} & \mathbf{M}_{12} \\ \mathbf{M}_{21} & \mathbf{M}_{22} \end{bmatrix}$$
2. $\mathbf{M}_{22} - \mathbf{M}_{21} \mathbf{M}_{11}^{-1} \mathbf{M}_{12}$ Is Positive Definite

Generalized Equations

Context of NLP
$$\min_{x \in X} f(x,t)$$
, s.t. $c(x,t) = 0$

Solution of Perturbed LGE $ar{w}_t = [ar{x}_t \ ar{\lambda}_t]$ Around $w_{t_0}^*$

KKT Conditions of Perturbed OP

$$0 \in F(w_{t_0}^*(t) +
abla_w F(w_{t_0}^*, t_0)(w - w_{t_0}^*) + \mathcal{N}_W(w)$$
 Canonical Form

min
$$\nabla_x f(x_{t_0}^*(t)^T \Delta x + \frac{1}{2} \Delta x^T \nabla_{xx} \mathcal{L}(w_{t_0}^*, t_0) \Delta x$$

s.t. $c(x_{t_0}^*(t) + \nabla_x c(x_{t_0}^*, t_0)^T \Delta x = 0$
 $\Delta x \ge -x_{t_0}^*$

$$\delta \in F(w_{t_0}^*, t_0) + \nabla_w F(w_{t_0}^*, t_0)(w - w_{t_0}^*) + \mathcal{N}_W(w)$$
 With $\delta = F(w_{t_0}^*, t_0) - F(w_{t_0}^*, t)$

From Lipschitz Continuity and Mean Value Theorem

$$||w_{t}^{*} - \bar{w}_{t}|| \leq L_{\psi}||r(w_{t}^{*}, t) - \delta||$$

$$\leq L_{\psi}||\left(F(w_{t_{0}}^{*}, t_{0}) + F_{w}(w_{t_{0}}^{*}, t_{0})(w_{t}^{*} - w_{t_{0}}^{*}) - F(w_{t}^{*}, t)\right) - \left(F(w_{t_{0}}^{*}, t_{0}) - F(w_{t_{0}}^{*}, t)\right)||$$

$$\leq L_{\psi}||F_{w}(w_{t_{0}}^{*}, t_{0})(w_{t}^{*} - w_{t_{0}}^{*}) - F(w_{t}^{*}, t) + F(w_{t_{0}}^{*}, t)||$$

$$\leq L_{\Delta}t^{2}$$

- Strong Regularity Requires SSOC and LICQ
- **NLP Error is Bounded by LGE Perturbation**
- One OP solution from exact manifold is second-order accurat

Generalized Equations

But I am never EXACTLY on the manifold: Stability of uncentered NLP Error

Theorem

- A1: LGE is Strongly Regular at $\ w_{t_k}^*$
- A2: \bar{w}_{t_k} Exists in Neighborhood and $\exists \ \delta_r \geq 0 \ \text{s.t.} \ \|\bar{w}_{t_k} w_{t_k}^*\| \leq L_{\psi} \|r(\bar{w}_{t_k}, t_k)\| \leq L_{\psi} \delta_r$

For sufficiently small Δt ,

$$\|\bar{w}_{t_k} - w_{t_k}^*\| \le L_{\psi} \delta_r \Rightarrow \|\bar{w}_{t_{k+1}} - w_{t_{k+1}}^*\| \le L_{\psi} \delta_r$$

Analysis Straightforward Using Residual Bounds Stability Holds Even if QP Solved to $O(\Delta t^2)$ Accuracy

Iterative Linear Algebra to Solve QP

- Direct Linear Solvers Cannot be Terminated Early (Wasted Overhead)
- Complicated by Changing Active-Sets

Alternative: Barrier & Apply Iterative Solver to Indefinite KKT System (Smoothing)

$$\min_{x} f(x,t)$$
s.t. $c(x,t) = 0$

$$x > 0$$

$$\min_{x} \phi(x,t) := f(x,t) - \left(\mu \sum_{i=1}^{nx} \ln \left(x^{(i)}\right)\right)$$
s.t. $c(x,t) = 0$

$$\begin{bmatrix} \nabla_{xx} \mathcal{L}(\bar{w}_{t_k}, t_k) + \sum_{t_k} & \nabla_x c(\bar{x}_{t_k}, t_k) \\ \nabla_x c(\bar{x}_{t_k}, t_k)^T & \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \lambda \end{bmatrix} = - \begin{bmatrix} \nabla_x \phi(\bar{x}_{t_k}, t_{k+1}) + \nabla_x c(\bar{x}_{t_k}, t_{k+1}) \bar{\lambda}_{t_k} \\ c(\bar{x}_{t_k}, t_{k+1}) \end{bmatrix}$$

- Truncated Newton with PCG, QMR

- Barrier Linearization Leads to Large Errors

- Fast Indefinite Preconditioner Needed

- Plus, barrier introduces a large parameter which may severely affect stability \bar{u}

Proposal: Augmented Lagrangean Penalty and Apply Projected Gauss-Seidel to QP

$$\min_{x} f(x,t)$$
s.t. $c(x,t) = 0$

$$x \ge 0$$

$$\min_{x} \mathcal{L}_{A}(x,\lambda,t) := f(x,t) + \lambda^{T} c(x,t) + \frac{\rho}{2} \|c(x,t)\|^{2}$$
s.t.
$$x \ge 0$$

$$\min_{x} \nabla_{x} \mathcal{L}_{A}(\bar{x}_{t_{k}}, \bar{\lambda}_{t_{k}}, t_{k+1})^{T} \Delta x + \frac{1}{2} \Delta x^{T} \nabla_{xx} \mathcal{L}_{A}(\bar{x}_{t_{k}}, \bar{\lambda}_{t_{k}}, t_{k}) \Delta x$$
s.t.
$$\Delta x > -\bar{x}_{t_{k}}$$

Close to Manifold Hessian of Augmented Lagrangean Remains at Least Positive Semi-Definite

Projected Gauss Seidel

$$\min_{w \ge \alpha} \quad \frac{1}{2} w^T \mathbf{M} w + \mathbf{b}^T w$$

$$\begin{aligned} & \mathbf{For} \ \ k = 0, 1, ..., n_{iter} \\ & w_i^{k+1} \ = \ -\frac{1}{\mathbf{M}_{ii}} \left(\mathbf{b}_i - \sum_{j < i} \mathbf{M}_{ij} w_j^{k+1} - \sum_{j > i} \mathbf{M}_{ij} w_j^k \right) \\ & w_i^{k+1} \ = \ \max \left(w_i^{k+1}, \alpha_i \right), \quad i = 1, ..., n \end{aligned}$$

- Detects Multiple Active-Set Efficiently Morales et.al. 2008, Tasora et.al. 2009
- High Accuracy Requires Large Number of Iterations \rightarrow Not if Δt Small! Ideal for us!

Algorithm:

Given $\bar{x}_{t_0}, \bar{\lambda}_{t_0}$, Δt , ρ , and n_{PGS} ,

- 1. Evaluate $\nabla_x \mathcal{L}_A(\bar{x}_{t_k}, \bar{\lambda}_{t_k}, t_{k+1}, \rho)$ and $\nabla_{xx} \mathcal{L}_A(\bar{x}_{t_k}, \bar{\lambda}_{t_k}, t_k, \rho)$.
- 2. Compute $\Delta \bar{x}_{t_{k+1}}$ applying n_{PGS} iterations to QP
- 3. Update $\bar{x}_{t_{k+1}} \leftarrow \bar{x}_{t_k} + \Delta \bar{x}_{t_{k+1}}$ and $\bar{\lambda}_{t_{k+1}} \leftarrow \bar{\lambda}_{t_k} + \rho c(\bar{x}_{t_{k+1}}, t_{k+1})$.
- 4. $k \leftarrow k+1$

First-Order Multiplier Update, Hestenes 1969 **Avoids Major Operations**

AugLag Penalty Acts as Parametric Perturbation of Lagrange Multipliers

Theorem

- A1: Augmented Lagrangean LGE is Strongly Regular at $w_{t \iota}^*$
- A2: $ar{w}_{t_k}$ Exists in Neighborhood and $\exists \ \delta_r \geq 0 \ \text{s.t.} \ \|ar{w}_{t_k} w_{t_k}^*\| \leq L_\psi \|r(ar{w}_{t_k}, t_k)\| \leq L_\psi \delta_r$

For sufficiently small Δt and sufficiently large ρ .

$$\|\bar{w}_{t_k} - w_{t_k}^*\| \le L_{\psi} \delta_r \Rightarrow \|\bar{w}_{t_{k+1}} - w_{t_{k+1}}^*\| \le L_{\psi} \delta_r$$

- Conditions More Strict Due to Multiplier Error
- Tune nPGS to Keep QP Solution Error $O(\Delta t^2)$

$$\min_{w \ge \alpha} \quad \frac{1}{2} w^T \mathbf{M} w + \mathbf{b}^T w$$

For
$$k = 0, 1, ..., n_{iter}$$

$$w_i^{k+1} = -\frac{1}{\mathbf{M}_{ii}} \left(\mathbf{b}_i - \sum_{j < i} \mathbf{M}_{ij} w_j^{k+1} - \sum_{j > i} \mathbf{M}_{ij} w_j^k \right)$$

$$w_i^{k+1} = \max \left(w_i^{k+1}, \alpha_i \right), \quad i = 1, ..., n$$

Remarks:

- Projected GS is Powerful Paradigm for <u>Linear MPC</u>
 - Fixed Matrix, Block Parallelizable (Multi-Thread)
- 2. Even if Dynamic System is SLOW....
 - Solve QP at High Frequency (Open-Loop) to Keep Track of Solution Manifold
 - Once Control is Needed, the Solution is **Very Close**, use as Warm-Start

Control of Polymerization Reactor

Numerical Tests

- Comparison Against Barrier Smoothing Heath, 2004, Ohtsuka, 2004

1)
$$\mu \cdot \log(x - x^{min}) + \mu \cdot \log(x^{max} - x)$$
 2) $\mu \cdot \operatorname{sqrt}(x - x^{min}) + \mu \cdot \operatorname{sqrt}(x^{max} - x)$ - $n_{PGS} = 25$, $\Delta t = 0.025$, $\rho = 100$

Smoothing is Numerically <u>Unstable</u> – Active-Set Changes Augmented Lagrangean Stands Relatively Large Initial Errors

Effect of Time Step Δt

Sampling Time Restricted by Time Needed to Perform n_{PGS} Iterations

Optimal vs. Approximate Profiles

4. Conclusions and Future Work		

Conclusions and Future Work

Motivation

- Accurate Search Steps Not Necessarily Best in Time-Critical Environments
- Cheap Strategies to Ensure $\Delta t
 ightarrow 0$ and Still Guarantee Error Stability

Generalized Equations

- Powerful Framework for Analysis of On-Line NLP Strategies

Augmented Lagrangean Strategy

- Projected Gauss-Seidel for High-Frequency QP Solutions

Work Needed

- Convergence
- Time-Adaptive Schemes
- Multi-Thread Implementations, Industrial Examples
- Avoid Augmented Lagrangean -- Projection Methods for General QPs

On-Line Nonlinear Programming as a Generalized Equation

Victor M. Zavala

Postdoctoral Researcher
Mathematics and Computer Science Division
Argonne National Laboratory

vzavala@mcs.anl.gov

Joint Work with: Mihai Anitescu

TWCCC Fall Meeting September, 2009

